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Abstract

The full Navier–Stokes equations and the energy equation for laminar natural convection heat transfer over an isothermal sphere
have been discretized using the finite control volume formulation and solved by employing the SIMPLEC method. Transient and
‘‘steady-state’’ results have been obtained for a wide range of high Grashof numbers (105

6 Gr 6 109) and a wide range of Prandtl num-
bers (Pr = 0.02, 0.7, 7 and 100). Main results are listed below. A plume with a mushroom-shaped cap forms above the sphere and drifts
upward continuously with time. The upward movement of the plume cap is slowed as the Prandtl number increases. The size and the level
of temperature of the transient cap and plume stem decrease with increasing Gr and Pr. The time at which the ‘‘steady-state’’ is reached,
increases with the Prandtl number. The presence of a vortex in the wake of the sphere has been predicted and has been clearly delineated
as a function of both Grashof and Prandtl numbers. The overall Nusselt numbers and total drag coefficients for the range of Grashof and
Prandtl numbers investigated are presented and they are in very good agreement with studies available in the literature.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Natural convection over a sphere is relevant in many
practical applications such as combustion and vaporization
of fuel droplets, spray drying, packed beds of spherical
bodies etc. There are fundamental unanswered questions
concerning the nature of flow separation due to natural
convection from spheres. The curvature effect inherent to
a sphere surface contributes to rapid growth of the bound-
ary layer followed by a flow separation as the momentum
of the fluid becomes sufficiently high to overcome the
increase in pressure. Consequently, the boundary layer
assumptions are invalid in such a region. The full
Navier–Stokes equations need to be employed to investi-
gate the plume development and the recirculation vortex
that may be present in the wake of the sphere.
0142-727X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Although numerous analytical, computational and
experimental investigations have been conducted on lami-
nar natural convection adjacent to a vertical flat plate, only
limited literature is available for natural convection over
spheres. Early analytical studies on natural convection over
a sphere considered limiting cases of either high Grashof
number by employing boundary layer theory or very low
Grashof number by employing asymptotic expansion
techniques (Chiang et al., 1964; Singh and Hasan, 1983;
Gebhart et al., 1988). The full Navier–Stokes equations
(without the boundary layer assumptions) and energy
equation of laminar natural convection over a sphere were
first solved numerically by Geoola and Cornish (1981,
1982) for 0.05 6 Gr 6 12500 and Pr of 0.72, 10 and 100.
Farouk (1983) solved the complete steady Navier–Stokes
equations to obtain local and overall heat transfer results
for small and moderate Rayleigh numbers (10�1

6 RaD 6

104). Fujii et al. (1984) presented transient results for
RaD = 100 and Pr = 0.72. Riley (1986) provided transient
solutions for 102

6 Gr 6 104 and Pr = 0.72 and 7.0. Dudek
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Nomenclature

CD total drag coefficient
CD,p pressure drag coefficient
CD,l viscous drag coefficient
c0p specific heat capacity at constant pressure

~F 0 body force in momentum equation
F 0D drag force
g 0 acceleration due to gravity
Gr Grashof number
h0h local heat transfer coefficient
�h0 average heat transfer coefficient
k 0 thermal conductivity
Nu overall Nusselt number
Nuh local Nusselt number
p0d motion pressure
Pr Prandtl number
r spherical radial coordinate
R, R00 sphere radius
Ra Rayleigh number
RaD Rayleigh number based on diameter
r1, z1 outer computational boundary
t time
T 0 dimensional temperature
Ts surface temperature
~V velocity vector
Vr radial velocity
Vh polar velocity
X, Y, Z Cartesian coordinates
z radial transformed coordinate

Greek symbols

b 0 coefficient of thermal volumetric expansion
Cz, Ch diffusion coefficients in general governing differ-

ential equation
dsource source term in general governing differential

equation
dH hydrodynamic boundary layer thickness
dT thermal boundary layer thickness
h spherical polar coordinate
l 0 absolute viscosity
m 0 kinematic viscosity
n non-dimensional temperature
q 0 density
r dependent variable in general differential equa-

tion
w non-dimensional stream function
x non-dimensional vorticity function

Subscripts

1 ambient condition
s surface conditions

Superscripts
0 dimensional value
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et al. (1988) obtained drag coefficients both numerically
and experimentally for a range of small Grashof numbers
(10�4

6 Gr 6 0.5). Jia and Gogos (1996a,b) conducted a
study over a wide range of Grashof numbers (10 6
Gr 6 108) and predicted flow separation and an associated
vortex in the wake of the sphere for large Grashof num-
bers. A stream function-vorticity formulation was adopted
and results presented were mostly limited to Pr = 0.72.

With regards to experimental work, a number of inves-
tigations have been conducted. Overall Nusselt number
(Nu) was presented for a wide range of Grashof numbers
and/or Rayleigh numbers by Yuge (1960), Mathers et al.
(1957), Amato and Tien (1972) and Kyte et al. (1953). Flow
separation was observed by Kranse and Schenk (1965) for
high Grashof number (108 < GrD < 109). Their study
involved melting of a solid benzene sphere in benzene
liquid (Pr = 8.3). They found that the local Nusselt number
first decreases with h, reaches a minimum and then
increases near the rear stagnation. The same phenomenon
was also observed by Schenk and Schenkels (1968) in their
experiment of an ice sphere melting in water (Pr = 7).
Shlien and Boxman (1980) measured the temperature field
of a laminar starting plume. They reported that a starting
plume with a mushroom-shaped cap rises from a heating
source and the column of fluid following the cap has the
same temperature distribution as the steady plume.

Jaluria and Gebhart (1975) investigated experimentally
natural convection over a hemisphere in water (107

6

GrD 6 3 · 108 and Pr = 7). Velocity and temperature pro-
files were determined. The centerline velocity within the
plume increased rapidly close to the sphere surface. A
sharp drop in centerline temperature within the plume
was observed very close to the surface. The local Nusselt
number, after presenting a minimum, increased rapidly as
the flow approached the top of the hemisphere. No flow
reversal was observed in their investigation.

From the literature survey presented above, it is clear
that most of the earlier investigators have mostly consid-
ered wide range of Gr but limited their studies to a single
Prandtl number (Fujii et al., 1984; Jia and Gogos,
1996a,b; Kranse and Schenk, 1965; Schenk and Schenkels,
1968; Shlien and Boxman, 1980; Jaluria and Gebhart,
1975). Also, only a few investigators have carried out tran-
sient analysis. In order to address the fundamental unan-
swered questions concerning the transient nature of flow
due to natural convection from isothermal spheres, the



Fig. 1. Buoyancy-driven flow over a sphere.
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present study has been carried out. For this purpose a
numerical model has been developed to solve the complete
time-dependent Navier–Stokes equations along with the
energy equation using the finite-volume method (Patankar,
1980) and the SIMPLEC method (Van Doormaal and Rai-
thby, 1984). The numerical model employs the primitive
variables to study the flow and temperature distributions
over the sphere. A wide range of high Grashof numbers
(105
6 Gr 6 109) and a wide range of Prandtl numbers

(Pr = 0.02, 0.7, 7 and 100), have been considered in this
study. The numerical simulations reveal flow separation
at the top of the sphere. The presence of flow separation
and an associated vortex in the wake of the sphere is clearly
dictated by both Grashof and Prandtl numbers. Transient
as well as ‘‘steady-state’’ values of the Nusselt numbers and
the total drag coefficients are also presented. In this study,
execution of the simulations has been terminated when
‘‘steady-state’’ is reached, namely, the variations in all the
variables with respect to time become negligible in the com-
putational domain under consideration.

2. Theoretical model

A sphere of fixed radius R00 held at a steady and uniform
temperature of Ts is suddenly introduced into a cold and
stagnant fluid environment maintained at temperature
and pressure of T 01 and p01. Gradually, the buoyancy effect
induces an upward axisymmetric flow field around the
sphere. Near the top of the sphere, hot fluid rises and forms
into an evolving plume.

The simulations have been carried out using the follow-
ing assumptions: (a) the sphere is kept stationary at all
times, (b) the fluid is Newtonian, of infinite extent, and
contains a single, inert chemical compound, (c) the flow
is buoyancy-driven, laminar and axisymmetric, and (d)
the bulk viscosity coefficient, radiation effects, viscous dis-
sipation and compressibility effects are negligible. The
assumption that the flow is axisymmetric may not be com-
pletely valid for high speed flows, especially for large Gras-
hof and Prandtl numbers. However, the predictions
regarding integrated surface quantities agree well with
experimental results available in the literature (presented
later). Regarding the transition to turbulence, it is a well
known fact that for horizontal cylinders, the critical Ray-
leigh number (GrPr) is around 109. However, it is assumed
in general, that in the range the 104 < GrPr < 1010 flow is
laminar and in the range of 109 < GrPr < 1012, it is turbu-
lent, since there is no clear cut delineation for a particular
value of the Rayleigh number at which transition may
occur. The flow behaves similarly for the sphere case. Thus,
it should be cautioned here that for the extreme case of
Pr = 100 and Gr = 109 considered, the laminar assumption
may not be completely valid.

Throughout the present study, the notation of prime is
used to indicate dimensional values. The dimensional gov-
erning equations for an incompressible fluid with constant
properties can be written in vector form:
r0 � ~V 0 ¼ 0 ð1Þ

q0
o~V 0

ot0
þ q0ð~V 0 � r0Þ~V 0 ¼ �r0p0 þ~F 0 þ l0r02~V 0 ð2Þ

q0c0p
oT 0

ot0
þ ð~V 0 � r0ÞT 0

� �
¼ k0r02T 0 ð3Þ

where ~V 0 is the velocity vector, ~F 0 is the body force, q 0 is the
density, t 0 is the time, p 0 is the pressure, T 0 is the tempera-
ture, and l 0, c0p and k 0 are viscosity, heat capacity at con-
stant pressure and thermal conductivity, respectively.
Employing the Boussinesq approximations, the terms

ð�r0p0 þ~F 0Þ can be replaced by �g0q0b0ðT 0 � T 01Þ � r0p0d ,
where g 0 is acceleration due to gravity, p0d is the motion

pressure and b0 ¼ � 1
q0

oq0

oT 0

� �
p0

is the coefficient of thermal

volumetric expansion.
Employing spherical coordinates (r 0,h), the physical

geometry and the surrounding fluid flow are illustrated in
Fig. 1. The above equations along with appropriate bound-
ary conditions can be cast in dimensionless form using:

r ¼ r0

R00
¼ ez; t ¼ V ref

R00
t0; pd ¼

p0d
1
2
q0V 2

ref

;

V r ¼
V 0r

V ref

; V h ¼
V 0h
V ref

; n ¼ T 0 � T 01
T 0s � T 01

where V 0r and V 0h are the radial and polar fluid velocity
components and n is the non-dimensional temperature.
The reference velocity Vref is given in terms of Grashof

number (V ref ¼ m0

R0
0
Gr1=2, where Gr ¼ R03

0
g0b0ðT 0s�T 0Þ

m02 ), where m 0

is the kinematic viscosity.
An exponential function for the non-dimensional radius

(r = ez) is used to produce finer grids near the surface of the
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sphere, where pressure, velocity and temperature gradients
are the largest. Using the exponential function, Eqs. (1)–(3)
may be rearranged and cast into a single generalized
dimensionless differential equation of the form:

o

ot
ðqre3z sin hÞ þ o

oz
ðqV rre2z sin hÞ þ o

oh
ðqV hre2z sin hÞ

¼ o

oz
Czez sin h

or
oz

� �
þ o

oh
Chez sin h

or
oh

� �
þ dsource ð4Þ

where r is the dependent variable of interest and Cz and Ch

are the radial and polar diffusion coefficients, respectively.
The values of r, Cz, Ch and dsource for the conservation
equations are given below.

(a) Mass continuity equation

r ¼ 1; Cz ¼ Ch ¼ 0; dsource ¼ 0 ð5Þ
(b) Radial momentum

r ¼ V r; Cz ¼ Ch ¼ 1=Gr1=2

dsource ¼ V 2
he2z sin h� e2z sin h

opd

oz
� ne3z cos h sin h

þ 1

Gr
1
2

�2
o

oh
ðV hez sin hÞ � 2V rez sin h

� � ð6Þ

(c) Polar momentum

r ¼ V h; Cz ¼ Ch ¼ 1=Gr1=2

dsource ¼ �V rV he2z sin h� e2z sin h
opd

oh
þ ne3z sin2 h

þ 1

Gr
1
2

2ez sin h
oV r

oh
� V hez

sin h

� � ð7Þ

(d) Energy equation

r ¼ n; Cz ¼ Ch ¼ 1=ðPrGr1=2Þ; dsource ¼ 0 ð8Þ
At time t 0 = 0 the fluid surrounding the sphere is at rest.

Thus, the initial conditions are given by Vh = Vr = n =
pd = 0 for z > 0 and 0 < h < p. At the sphere surface
(z = 0), both the initial and the boundary conditions are
given as Vh = Vr = 0 and n = 1.

Boundary conditions on the axis of symmetry, where
h = 0, p, is given by

V h ¼ oV r=oh ¼ on=oh ¼ opd=oh ¼ 0

On the outer boundary (z = z1), boundary conditions suit-
able for having mass and energy transfer across the bound-
ary is employed. Thus,

o

oz
ðV re2zÞ ¼ pd ¼ V h ¼ 0
(a) At the inflow region (Vr < 0), n = 0.
(b) At the outflow region (Vr > 0), on/oz = 0.

The pressure and viscous drag coefficients are given as

CD;p ¼ 2

Z p

0

pd js sin 2hdh ð9Þ
and

CD;l ¼ �
4

Gr
1
2

Z p

0

oV h

oz

����
s

sin2 hdh ð10Þ

The total drag coefficient is given by

CD ¼ CD;p þ CD;l ð11Þ

The local and the overall Nusselt numbers are expressed as

Nuh ¼
h0hð2R00Þ

k0
¼
ð2R00Þ oT

or0

	 

s

T s � T1
¼ �2

on
oz

� �
s

ð12aÞ

and

Nu ¼
�h0ð2R00Þ

k0
¼ �

Z p

0

on
oz

����
z¼0

sin hdh ð12bÞ

where the average heat transfer coefficient �h0 is computed
using the expression given below.

�h0ðT s � T1Þð4pR020 Þ ¼ �
Z p

0

k0
oT
or0

� �
s

2pR00 sin hR00 dh ð12cÞ
3. Numerical method

The governing equations are discretized using the finite
control volume formulation and the hybrid scheme (Patan-
kar, 1980). A staggered grid is employed for the velocity
components. As mentioned earlier, z = 0 indicates the
sphere surface and z = z1 indicates the ‘‘computational
infinity’’. This is an approximation which causes negligible
error in heat transfer and stress distribution near the sphere
surface when z1 is adequately large. The velocity compo-
nents, temperature and motion pressure from the previous
time step have been used to evaluate the coefficients and
source term in the algebraic equations. The SIMPLEC
algorithm developed by Van Doormaal and Raithby
(1984) has been employed to evaluate the motion pressure
field. The equations are solved by the ADI (Alternating
Direction Implicit) method. The modified TDMA (Tri
Diagonal Matrix Algorithm) solver with a relaxation
parameter of 1.85 (Van Doormaal and Raithby, 1984)
was used along each of the two alternating directions and
the solution is obtained through iterations within a time
step. For an indication of convergence in the iteration pro-
cess, an average Euclidean norm has been calculated and
the convergence is determined by checking whether the
norm after certain number of iterations is less than or equal
to the product of the average norm of the first iteration and
a residual reduction factor. The residual reduction factor is
taken as 0.1 for velocities and temperature, and 0.2 for
pressure correction as recommended by Van Doormaal
and Raithby (1984). Extensive simulations have been car-
ried out to select the appropriate numerical parameters.
Thus, the parameters listed in Table 1 ensure that the final
solutions are reasonably independent of grid size (Dz and
Dh), time increment (Dt), and ‘‘computational infinity’’
ðr1 ¼ ez1Þ. For example, results presented in Table 2 show



Table 1
Numerical parameters used in the present study

Gr Parameter Pr

0.02 0.7 7 100

105 Dz 0.02 0.01 0.005 0.005
Dh 2� 1� 1� 1�
Dt 0.08 0.05 0.05 0.05
r1 54 20 20 11

106 Dz 0.02 0.01 0.005 0.003
Dh 2� 1� 0.5� 0.5�
Dt 0.08 0.05 0.03 0.03
r1 54 20 20 11

107 Dz 0.01 0.005 0.0025 0.0025
Dh 1� 0.5� 0.5� 0.5�
Dt 0.05 0.03 0.03 0.03
r1 20 12 7.4 7

108 Dz 0.005 0.0025 0.0025 0.0015
Dh 1� 0.5� 0.5� 0.5�
Dt 0.03 0.03 0.03 0.03
r1 20 7.4 7.4 7

109 Dz 0.003 0.0025 0.0015 0.001
Dh 0.5� 0.5� 0.5� 0.5�
Dt 0.02 0.02 0.02 0.02
r1 11 7.4 5.2 5.2

Table 2
Effect of computational infinity on ‘‘steady-state’’ drag coefficients and
overall Nusselt number for Gr = 106 and Pr = 0.02

r1 CD,p CD,l Nu

20 6.086 9.400 0.5611
54 6.121 9.438 0.5610

120 6.120 9.437 0.5610
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how the value of r1 was selected as 54 for the case of Gr =
106 and Pr = 0.02 (Table 1). To better explain the procedure
for the selection of grid size, time step and computational
infinity, a typical case of Gr = 106 and Pr = 0.02 has been
considered and the details are presented in Appendix A.
ig. 2. Non-dimensional temperature profiles at different angles
RaD = 1.7 · 108).
4. Results and discussion

4.1. Validation

The numerical model has been validated with the exper-
imental results available in the literature. An experimental
investigation of free convection heat transfer from heated
spheres to water has been reported by Amato and Tien
(1972). A case where the Rayleigh number (RaD) is equal
to 1.7 · 108, has been simulated and the variations of the
temperature with the normal (radial) distance, at different
angles have been compared with the experimental results
reported in (Amato and Tien, 1972). Fig. 2 shows the
non-dimensional temperature profiles obtained from the
present study in comparison with those measured by
experiments (Amato and Tien, 1972). It is clear from
Fig. 2 that the numerical model is able to predict the
temperature variations very close to those measured in
F
(

the experiments. For the same case, the variation of veloc-
ity with the normal distance obtained from both numerical
model as well as the experiments has been plotted in Fig. 3.
Near the sphere surface, the velocity profiles between the
numerical model and experiments agree well. However,
the numerical model slightly over-predicts the velocity
values at larger normal distances. The reasons for this
may be multifold; the assumptions in the numerical model,
such as axisymmetric and laminar flow, errors due to the



Fig. 3. Velocity profiles at different angles (RaD = 1.7 · 108).

Table 4
‘‘Steady-state’’ overall Nu and CD for Gr = 0.05 and Pr = 0.72

Results of CD Overall Nusselt number

Present model 4.26 2.14
Dudek et al. (1988) 4.33 2.13
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interference of the velocity measuring probe and the pres-
ence of velocity fluctuations in the experimental measure-
ments, could be some of these reasons.

To further validate the code, the overall Nusselt num-
bers (Nu) and the total drag coefficients (CD) have been
compared with the results obtained by Jia and Gogos
(1996a), where a stream function-vorticity formulation
has been adopted. Table 3 shows that the maximum varia-
tions in Nu and CD between the present results and those
reported in Jia and Gogos (1996a) are around 5.5% and
7%, respectively. As mentioned earlier, the present model
allows for the inflow in the lower part of the outer bound-
ary and outflow in the upper part. The model reported in
(Jia and Gogos, 1996a) considered no cross flow at the
outer boundary, which may be the reason for such varia-
tion between the results presented in Table 3. Dudek
Table 3
‘‘Steady-state’’ overall Nu and CD for Pr = 0.7 and various Grashof
numbers

Grashof number

105 106 107

Nu CD Nu CD Nu CD

Present 27.86 0.357 48.11 0.200 84.12 0.113
Jia and Gogos (1996a) 28.74 0.36 49.85 0.190 89.62 0.105
et al. (1988) employed the same boundary condition as in
the present model. In order to compare the results of the
present work with those reported by Dudek et al. (1988),
a simulation was conducted for small Grashof number
(Gr = 0.05) and Pr = 0.72. Table 4 presents Nu and CD val-
ues from (Dudek et al., 1988) and the present work. The
maximum difference between the results for both quantities
is less than 2%.
4.2. Transient temperature and flow fields

In Fig. 4, the temporal evolution (with respect to the
dimensionless time) of temperature contours has been pre-
sented for Gr = 108 and different Prandtl numbers. Ini-
tially, convection effects are very weak and conductive
heat transfer is predominant. Consequently, the tempera-
ture contours are nearly symmetric in the radial direction
(t = 1.2 in Fig. 4). As time proceeds, the buoyancy-induced
motion increases gradually and a transient plume with a
mushroom-shaped cap forms above the sphere (t = 3.6 in
Fig. 4). This is consistent with the observations available
in the literature (Shlien and Boxman, 1980). Eventually,
the stem of the plume becomes steady, whereas the plume
cap rises continuously and eventually ‘‘flows out’’ of the
computational domain (t = 8.4 and 24 in Fig. 4). The
thicknesses of the transient cap and of the steady plume
stem decreases with increasing Prandtl number. In Fig. 5,
the temporal evolution (with respect to the dimensionless
time) of the streamlines is presented for the same set of Pra-
ndtl number and Grashof numbers as in Fig. 4. The
entrained fluid rises and then rolls downward resulting in
a velocity pattern in the form of a vortex ring, initially
located at the side of the sphere (t = 1.2 in Fig. 5). As time
progresses, the vortex ring is pushed upward along the sur-
face of the sphere (t = 3.6, 6 and 8.4 in Fig. 5). After it
reaches the top of the sphere, it sheds out of the computa-
tional domain (t = 24 in Fig. 5). It can be noted that the
upward movement of the vortex ring is slowed down with
increasing Prandtl number.

The temporal evolution of temperature contours and
streamlines for Pr = 7 and different Grashof numbers are
presented in Figs. 6 and 7, respectively. In this case, in
the temperature contours, the thicknesses of both the tran-
sient cap and the steady plume stem decreases with increas-
ing Grashof number (Fig. 6). As far as the streamlines are
concerned, the upward movement of the of vortex ring with
dimensionless time does not seem to be affected by the
increasing value of the Grashof number (Fig. 7). That is,
irrespective of the Grashof number value, at the same
dimensionless time, the vortex ring reaches the upper part



Fig. 4. Non-dimensional temperature (n) contours for Gr = 108 and different Prandtl numbers at different non-dimensional times (nmin = 0.05, nmax = 0.95
and Dn = 0.15).
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of the computational domain and it is shed out, unlike the
previous case, where the increasing Prandtl number slowed
down the upward movement of the vortex ring (Fig. 5).
However, it should be noted that since, the dimensionless
time is proportional to the square root of the Grashof
number, this implies that with respect to the dimensional
time, both the plume cap (Fig. 6) and the vortex ring
(Fig. 7) move upward faster with increasing Grashof
number.

4.3. Recirculation vortex

Jia and Gogos (1996a,b) reported that a recirculation
vortex forms in the wake of the sphere for high Grashof



Fig. 5. Streamlines for Gr = 108 and different Prandtl numbers at different non-dimensional times (wmin = 0).
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number (Gr P 107) and Pr = 0.72. No vortex was found
for (Pr = 7) in their numerical study. In the present study,
a range of higher Grashof number (105

6 Gr 6 109) and a
wider range of Prandtl numbers (Pr = 0.02, 0.7, 7 and
100) have been investigated. For adequately large Grashof
number, a recirculation vortex has been observed for
Pr = 0.02, 0.7 and 7. The presence of the recirculation vor-
tex depends not only on the Grashof number but also on
the Prandtl number. In general, the shape of the vortex is
similar to that reported by Jia and Gogos (1996a,b), that
is, the vortex resembles a small thin cap which is located
very close to the top surface of the sphere and next to
the axis of symmetry. Typically, the angular extent is larger
than its radial dimension.
Fig. 8 presents the ‘‘steady-state’’ streamlines in the
wake of the sphere for Pr = 0.02, 0.7 and 7 and different
Grashof numbers. Jia and Gogos (1996a) concluded that
the size of the vortex increases with Grashof number.
Although such a statement is valid for Pr = 0.72, consid-
ered in their study, the present study, which includes a
wider range of Prandtl numbers indicates a more complex
dependence of the vortex size on Grashof and Prandtl
numbers. Thus, for the lowest Pr considered (Pr = 0.02),
the vortex’s radial extent decreases slightly with Grashof
number. Furthermore, the higher the Prandtl number, the
higher the Grashof number at which a vortex is present.
The size of the vortex, both in its axial and angular extent,
decreases with increasing Prandtl number (Fig. 8). Also, no



Fig. 6. Non-dimensional temperature (n) contours for Pr = 7 and different Grashof numbers at different non-dimensional times (nmin = 0.05, nmax = 0.95
and Dn = 0.15).
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vortex was observed for Pr = 100 in the range of Grashof
numbers investigated. In Fig. 9, non-dimensional tempera-
ture contours (on the left) and streamlines (on the right)
near the top of the sphere are presented for Gr = 107 and
Pr = 0.02 at different non-dimensional times. The vortex
evolves with time as seen in Fig. 9. At approximately
t = 2.4, a thin vortex appears with an angular extent
of approximately p/6. The vortex grows in the radial



Fig. 7. Streamlines for Pr = 7 and different Grashof numbers at different non-dimensional times (wmin = 0).
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direction with time while its angular extent remains con-
stant. The presence of the vortex drastically alters the
temperature distribution near the top of the sphere as seen
in Fig. 9.

4.4. Transverse velocity and temperature profiles

Fig. 10 presents the ‘‘steady-state’’ vertical velocity com-
ponent VY along the transverse axis X ðX ¼ X 0=R00Þ in the
vicinity of the top of the sphere for Pr = 0.02 and
Gr = 108. Close to the sphere surface ðY ¼ Y 0=R00 ¼ 1:1Þ
the vertical velocity component around the axis of symme-
try is negative due to flow reversal (vortex) on the top of the
sphere. Above the flow reversal region (wake), the velocity
along the centerline (X = 0) increases with increasing dis-
tance (Y) from the sphere surface. The temperature profiles
for the same locations corresponding to Fig. 10 are shown
in Fig. 11. At (Y = 1.1), the peak of the temperature is set
off from the axis of symmetry due to the presence of the vor-
tex. The vertical velocity component VY and temperature
profiles along the transverse axis in the vicinity of the top
of the sphere are shown in Figs. 12 and 13 for Pr = 7 and
Gr = 108. Due to the absence of the vortex near the top of
the sphere for this case, the vertical velocity is always posi-
tive. The extent of the velocity profile with X decreases with
increasing Y till Y < 2 and then increases with increasing Y
for Y > 2 (Fig. 12). This is consistent with the observations
of Jaluria and Gebhart (1975).



Fig. 8. ‘‘Steady-state’’ streamlines in the wake of the sphere for Pr = 0.02, 0.7 and 7 and different Grashof numbers. W = Gr1/4Pr1/2w. Vortex (W < 0):
DW = 1/2W. For W > 0: W = 0.15, 0.3, 0.45.
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4.5. Overall Nusselt number and total drag coefficients

The temporal evolution of the total drag coefficient and
the overall Nusselt number for Gr = 108 and different
Prandtl numbers are shown in Figs. 14 and 15. At low Pra-
ndtl numbers (Pr = 0.02, 0.7 and 7), the total drag coeffi-
cient increases to a maximum value before reaching the
‘‘steady-state’’ value. This trend has been reported in the
literature (Jia and Gogos, 1996a). However, for Pr = 100,
the total drag coefficient gradually increases and reaches



Fig. 9. ‘‘Steady-state’’ non-dimensional temperature contours (left) and streamlines (right) in the wake of the sphere for Pr = 0.02 and Gr = 107 at
different times. Temperature: nmin = 0.75, nmax = 1 and Dn = 0.05; Streamline: Dw = 1/4wmin for vortex and w = 0.005, 0.01 and 0.015 for w > 0.
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the ‘‘steady-state’’ value (Fig. 14). The larger viscous effects
associated with Pr = 100, may be the cause for such slow
evolution of the total drag coefficient. Similarly, at low
Prandtl numbers (Pr = 0.02, 0.7 and 7), the overall Nusselt
number reaches a minimum, before reaching the ‘‘steady-
state’’ value and at Pr = 100, Nu gradually decreases to



Fig. 10. ‘‘Steady-state’’ vertical velocity in the wake of the sphere for
Pr = 0.02 and Gr = 108.

Fig. 11. ‘‘Steady-state’’ temperature profiles in the wake of the sphere for
Pr = 0.02 and Gr = 108.

Fig. 12. ‘‘Steady-state’’ vertical velocity in the wake of the sphere for
Pr = 7 and Gr = 108.

Fig. 14. Temporal evolution of the total drag coefficient as a function of
Prandtl number for Gr = 108.

Fig. 13. ‘‘Steady-state’’ temperature profiles in the wake of the sphere for
Pr = 7 and Gr = 108.
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the ‘‘steady-state’’ value (Fig. 15). It can be observed from
Figs. 14 and 15 that as Pr increases, time to reach the
‘‘steady-state’’ also increases.

Fig. 16 presents the overall Nusselt number as a func-
tion of Rayleigh number (RaD = GrDPr) for Pr = 0.02,
0.7, 7 and 100. The results obtained from the present study
are indicated by symbols. The results from the correlation
presented by Churchill (1983) are shown by dashed lines.
The solid line represents the result obtained from Chur-
chill’s correlation for Pr!1. The present results are in
very good agreement with the correlation (Churchill, 1983).

The total drag coefficient as a function of the square
root of the Grashof number is presented in Fig. 17. Dashed
lines show the analytical solution reported by Stewart



Fig. 15. Temporal evolution of the overall Nusselt number as a function
of Prandtl number for Gr = 108.

Fig. 16. ‘‘Steady-state’’ overall Nusselt number as a function of RaD.

Fig. 17. ‘‘Steady-state’’ total drag coefficient as a function of Gr1/2.
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(1971), which is based on boundary layer theory for low
Prandtl numbers and an asymptotic series expansion for
large Prandtl numbers. At low Prandtl numbers, the results
from the present study deviate from those reported in Stew-
art (1971). This may be due to the fact that the boundary
layer solution was employed for the low Prandtl number
cases. However, at a larger Prandtl number (Pr = 100),
results from the present study closely agree with the results
presented in (Stewart, 1971). The asymptotic series expan-
sion employed at larger Pr may be the reason for this.

5. Summary

The full Navier–Stokes equations and energy equation
for laminar natural convection heat transfer over an
isothermal sphere were discretized using the finite control
volume formulation and were solved by employing the
SIMPLEC method. At the outer boundary of the com-
putational domain, boundary conditions suitable for
having mass and energy transfer across the boundary have
been employed. Transient and ‘‘steady-state’’ results were
obtained for a wide range of high Grashof numbers
(105
6 Gr 6 109) and a wide range of Prandtl numbers

(Pr = 0.02, 0.7, 7 and 100). The main results are summa-
rized below.

When an isothermal sphere is placed within a cold ambi-
ent fluid, conductive heat transfer is initially predominant.
As time advances, an axisymmetric plume with a mush-
room-shaped cap forms near to the top of the sphere and
the plume cap moves upward due to the buoyancy-induced
flow-field. The upward movement of the plume cap is slo-
wed as the Prandtl number increases. The size and the level
of temperature of the transient cap and plume stem
decrease with increasing Gr and Pr. As the plume cap
moves upward, the temperature and flow field around the
sphere gradually reaches a ‘‘steady-state’’ condition. The
time at which the ‘‘steady-state’’ is reached, increases with
the Prandtl number. The presence of a vortex in the wake
of the sphere has been predicted and has been clearly delin-
eated as a function of both Grashof and Prandtl numbers.
For low Prandtl number cases (Pr = 0.02, 0.7 and 7), tem-
poral evolution of the overall Nusselt numbers and the
total drag coefficients show that the overall Nusselt number
and the total drag coefficient reach a local minimum and a
local maximum value, respectively, before reaching the
‘‘steady-state.’’ At Pr = 100, the overall Nusselt number
and the total drag coefficient reach the ‘‘steady-state’’ value
monotonically. The overall Nusselt numbers and total drag
coefficients for the range of Grashof and Prandtl numbers
investigated are presented and they are in very good agree-
ment with studies available in the literature.
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Appendix A

The case where Gr = 106 and Pr = 0.02 has been con-
sidered throughout this section. The influence of the radial
increment (Dz) has been tested by considering 3 values for
Dz and studying its impact on the variation of non-dimen-
Fig. A1. Non-dimensional temperature vs. normal distance f

Fig. A2. Non-dimensional surface pressure along sphere surface
sional temperature with normal distance at h = 45�.
Fig. A1 shows that the profiles compare very closely
between the cases of Dz = 0.01 and Dz = 0.02, implying
that Dz = 0.02 would be accurate for the set of Gr and
Pr considered. The influence of the tangential increment
(Dh) has been tested by considering 3 values for Dh and
studying its impact on the variation of surface pressure
(non-dimensional) along the surface of the sphere.
Fig. A2 shows that the pressure variation along the sphere
or different Dz values (Dt = 0.08, Dh = 2� and r1 = 54).

for different Dh values (Dz = 0.02, Dt = 0.08 and r1 = 54).
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surface compares closely between the cases of Dh = 1� and
Dh = 2�. Thus, Dh = 2� would be accurate for the set of
Gr and Pr considered. The influence of the computational
infinity (r1) has been tested by considering 3 values for r1
and studying its impact on the variation of radial velocity
(cm/s) with the normal distance at h = 45�. Fig. A3 shows
that the variation of radial velocity (cm/s) with the nor-
mal distance compares closely between the cases of
r1 = 54 and r1 = 108, thus, r1 = 54 would be accurate
for the set of Gr and Pr considered. Finally, the influence
Fig. A3. Radial velocity (cm/s) vs. normal distance for d

Fig. A4. Variation of CD with time for different
of the time step has been tested by considering 3 values
for Dt and studying its impact on the variation of the
overall drag coefficient with time. Fig. A4 shows that
the temporal variation of the overall drag coefficient
compares closely between the cases of Dt = 0.08 and
Dt = 0.04. This shows that Dt = 0.08 would be accurate
enough for the set of Gr and Pr considered. This proce-
dure was repeated to choose the numerical parameters
for other sets of Gr and Pr. These parameters are shown
in Table 1.
ifferent r1 values (Dz = 0.02, Dh = 2� and Dt = 0.08).

Dt values (Dz = 0.02, Dh = 2� and r1 = 54).
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